050501200 关闭膜片 SHUT OFF MEMBRANE JETS64 FD/VPC-V 生活污水排放泵及真空马桶备件
飞行优化控制和推进剂能量管理需要,发展了一种采用隔层式 ( 软隔离) 或隔舱式 ( 硬隔离) 隔离装置进行固体发动机燃烧室分隔的技术,可实现固体火箭发动机的多次关机、启动。在现有两种形式隔离装置中,隔舱式具有结构简单、下一级脉冲装药形式限制小、打开压强统一性高等一系列优点,已逐渐发展形成喷射棒、非金属易碎、金属膜片等形式隔离装置的双脉冲发动机。
金属膜片式隔舱脉冲发动机常选用金属或非金属支撑件、一侧经绝热处理的金属膜片组合进行燃烧室分隔,经验证,该方案采用隔热层、沉淀硬化不锈钢隔板本体、绝热层和金属膜片结构可以实现燃烧室分隔,但仍存在质量大、绝热特性差等缺点。提出了8通气孔金属隔板设计,提高了绝热和抗烧蚀性能,但结构型面仍有不足。
轮辐式支撑件可减小隔舱重量,并且可与密封膜片紧密贴实,因此被广泛应用于各类脉冲发动机。此外,在膜片上还能实施刻痕、绝热处理、材料改进等措施,可进一步改善打开压强、材料敏感性等特性。 [2]
金属膜片设计
采用金属膜片和轮辐式支撑构成隔舱结构完成双脉冲发动机燃烧室级间隔离。其工作原理为: I 脉冲点火工作时,在金属膜片分隔作用下两脉冲燃烧室保持独立; 当 II 脉冲工作内压达到打开压强后,膜片按预先设计形式破裂,两级燃烧室贯通,燃气依次通过隔舱结构、I 脉冲燃烧室和尾喷管后排出,产生第二次推力。
为实现以上工作过程,金属膜片在隔舱结构设计过程中占重要地位。根据液体发动机阀门破裂膜片研究方法,确定采用强度高、易变形的LY12铝合金材料、薄板形式金属膜片。另外,为可靠、方便地控制打开压强、隔舱消融形状,还需在其一侧进行预先刻痕处理。 [2]
应力强度因子公式推导
在不影响结论正确性基础上,做以下假设以便合理确定预制缺陷结构参数,完成膜片设计:
( 1) 选取垂直于缺陷槽的任一截面作为研究对象,将该截面简化为二维板条结构。
( 2) 膜片实际破坏过程为瞬间动态过程,材料还未发生塑性屈服,近似认为膜片的动态破坏过程为线弹性断裂问题。
( 3) 圆弧长度与预制缺陷V型槽斜面长比值小于0.05倍时,膜片打开压强对预制缺陷圆角并不敏感,因此,预制缺陷需确定的结构参数仅为V型槽开口角度α,缺陷深度a和膜片厚度h。
此外,由于所确定的金属膜片预制缺陷槽为均匀放射状,各缺陷槽尺寸、受力状态相同,忽略各缺陷槽之间的影响,任取其中任一条缺陷作为研究对象;所设计的金属膜片破坏形式均为 I 型裂纹扩展破坏,因此只需求解预制缺陷处的 I 型应力强度因子 KI 即可表征金属膜片设计合理性。
JETS 050501200关闭DWG薄膜
JETS 真空马桶控制器054100970
JETS 100100030释放按钮
JETS 真空马桶控制器101100010
JETS 101101810 启动阀
JETS 034503112 橡皮管
JETS 034501010 橡皮管
橡胶接头 034505600
JETS 034536900 NR-阀
037201300 O形密封圈
马桶盖支座 069608603
JETS 034501020 软管
JETS 100100601 弹簧
JETS 037201301 密封圈
JETS 100100450 阀芯
JETS 034505610 阀嘴
053531720固定弹簧 JETS 64
JETS 038225700 油封总成
JETS 02A265105 真空吸尘器的隔离套
JETS 038399550 真空吸尘器的环
JETS 037531100 密封
JETS 036531600 螺丝
金属膜片结构设计
根据II脉冲药柱稳定点燃初始压强控制要求,确定金属膜片设计打开压强为2.2MPa。在某实际隔舱式双脉冲发动机直径限制膜片半径R =142mm时,确定动态断裂韧性约为21MPa /m2的膜片结构尺寸分别为: 开口角度α =90°,缺陷深度a=1mm,膜片厚度h=3mm。
经计算,在该参数条件时预制缺陷上应力强度因子随径向距离变化关系。可以看出: 由于圆板中心处应力最大,应力强度因子在该处也达到极大值,其后随径向距离增大逐渐减小。此外,圆心处应力强度因子达到21.4 MPa/m2 ,大于对应材料断裂韧性,因此在该燃烧室内压作用下,膜片将从中心位置开始破坏并逐步扩展致整个预制缺陷,符合预先设计。 [2]
金属膜片打开验证实验
为考核结构参数设计合理性,采用装置开展隔舱金属膜片打开单项实验。该实验装置由 I、II 脉冲集压室、隔舱结构、进压口、测试装置等部件构成。实验中在 II 脉冲集气室内装填假药柱以真实模拟脉冲发动机自由空间,通过设置在两个集压室的进压口与利用适量点产生的压强相互联通模拟脉冲发动机燃烧室初始压强。 [2]
针对设计膜片结构开展6次实验研究,实验后进行的膜片完整性检查结果显示: 除第一次实验中膜片结构较为完整外,其余均从预制缺陷位置产生3~ 5条数量不等的 I 型贯穿性裂纹,与预先“米"字形设计一致。同时,实验中也发现后五次实验中各条缺陷均未同时贯穿,主要原因在于:应力强度因子一致性受缺陷深度加工误差影响较大,必然导致破坏程度存在一定差异。
第一次实验中点产生的最大压强仅为1.68MPa,小于打开压强设计值,因此膜片打开失败; 其余5次实验因建压加载速率差异等因素影响,各次实验曲线间存在一定差异,但总体变化趋势趋于一致,五次实验中打开压 强平均值为2.10MPa,与设计值误差约为4.545% ,说明采用所建立方法获得的金属膜片结构参数满足设计要求